The Notch Ligand Delta-Like 4 Regulates Multiple Stages of Early Hemato-Vascular Development

نویسندگان

  • Ricardo Laranjeiro
  • Isabel Alcobia
  • Hélia Neves
  • Andreia C. Gomes
  • Pedro Saavedra
  • Catarina C. Carvalho
  • António Duarte
  • António Cidadão
  • Leonor Parreira
چکیده

BACKGROUND In mouse embryos, homozygous or heterozygous deletions of the gene encoding the Notch ligand Dll4 result in early embryonic death due to major defects in endothelial remodeling in the yolk sac and embryo. Considering the close developmental relationship between endothelial and hematopoietic cell lineages, which share a common mesoderm-derived precursor, the hemangioblast, and many key regulatory molecules, we investigated whether Dll4 is also involved in the regulation of early embryonic hematopoiesis. METHODOLOGY/PRINCIPAL FINDINGS Using Embryoid Bodies (EBs) derived from embryonic stem cells harboring hetero- or homozygous Dll4 deletions, we observed that EBs from both genotypes exhibit an abnormal endothelial remodeling in the vascular sprouts that arise late during EB differentiation, indicating that this in vitro system recapitulates the angiogenic phenotype of Dll4 mutant embryos. However, analysis of EB development at early time points revealed that the absence of Dll4 delays the emergence of mesoderm and severely reduces the number of blast-colony forming cells (BL-CFCs), the in vitro counterpart of the hemangioblast, and of endothelial cells. Analysis of colony forming units (CFU) in EBs and yolk sacs from Dll4(+/-) and Dll4(-/-) embryos, showed that primitive erythropoiesis is specifically affected by Dll4 insufficiency. In Dll4 mutant EBs, smooth muscle cells (SMCs) were seemingly unaffected and cardiomyocyte differentiation was increased, indicating that SMC specification is Dll4-independent while a normal dose of this Notch ligand is essential for the quantitative regulation of cardiomyogenesis. CONCLUSIONS/SIGNIFICANCE This study highlights a previously unnoticed role for Dll4 in the quantitative regulation of early hemato-vascular precursors, further indicating that it is also involved on the timely emergence of mesoderm in early embryogenesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hedgehog regulates distinct vascular patterning events through VEGF-dependent and -independent mechanisms.

Despite the clear importance of Hedgehog (Hh) signaling in blood vascular development as shown by genetic analysis, its mechanism of action is still uncertain. To better understand the role of Hh in vascular development, we further characterized its roles in vascular development in mouse embryos and examined its interaction with vascular endothelial growth factor (VEGF), a well-known signaling ...

متن کامل

Delta-Like Ligand 4-Notch Signaling in Macrophage Activation.

The Notch signaling pathway regulates the development of various cell types and organs, and also contributes to disease mechanisms in adults. Accumulating evidence suggests its role in cardiovascular and metabolic diseases. Notch signaling components also control the phenotype of immune cells. Delta-like ligand 4 (Dll4) of the Notch pathway promotes proinflammatory activation of macrophages in ...

متن کامل

Endothelial signalling by the Notch ligand Delta-like 4 restricts angiogenesis.

Notch signalling by the ligand Delta-like 4 (Dll4) is essential for normal vascular remodelling, yet the precise way in which the pathway influences the behaviour of endothelial cells remains a mystery. Using the embryonic zebrafish, we show that, when Dll4-Notch signalling is defective, endothelial cells continue to migrate and proliferate when they should normally stop these processes. Artifi...

متن کامل

The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching.

Delta-like 4 (Dll4) is a transmembrane ligand for Notch receptors that is expressed in arterial blood vessels and sprouting endothelial cells. Here we show that Dll4 regulates vessel branching during development by inhibiting endothelial tip cell formation. Heterozygous deletion of dll4 or pharmacological inhibition of Notch signaling using gamma-secretase inhibitor revealed a striking vascular...

متن کامل

Regulation of vascular morphogenesis by Notch signaling.

The Notch pathway is a versatile regulator of cell fate specification, growth, differentiation, and patterning processes in metazoan organisms. In the vertebrate cardiovascular system, multiple Notch family receptors and several of their Jagged and Delta-like ligands are expressed during critical stages of embryonic and postnatal development. Functional studies in mice, fish, tumor models, and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012